Query-By-Multiple-Examples using Support Vector Machines
نویسندگان
چکیده
We identify and explore an Information Retrieval paradigm called Query-By-Multiple-Examples (QBME) where the information need is described not by a set of terms but by a set of documents. Intuitive ideas for QBME include using the centroid of these documents or the well-known Rocchio algorithm to construct the query vector. We consider this problem from the perspective of text classification, and find that a better query vector can be obtained through learning with Support Vector Machines (SVMs). For online queries, we show how SVMs can be learned from one-class examples in linear time. For offline queries, we show how SVMs can be learned from positive and unlabeled examples together in linear or polynomial time, optimising some meaningful multivariate performance measures. The effectiveness and efficiency of the proposed approaches have been confirmed by our experiments on four real-world datasets.
منابع مشابه
STAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملActive selection for multi-example querying by content
Multi-example content-based retrieval (MECBR) is the process of querying content by specifying multiple query examples with a single query iteration. MECBR attempts to mitigate some of the semantic limitations of traditional relevance feedback or CBR techniques by allowing multiple query examples and thus a more accurate modeling of the user’s query need. It also attempts to minimize the burden...
متن کاملRobot control system using SMR signals detection
One of the important issues in designing a brain-computer interface system is to select the type of mental activity to be imagined. In some of these systems, mental activity varies with user intent and action that must be controlled by the brain-computer system, and in a number of other signals, the received signals contain the same activity-related mental activity that should be performed by t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JDIM
دوره 7 شماره
صفحات -
تاریخ انتشار 2009